
UDC 532.51 

ON THL NONLINEAR THllORY OF STABILITY OF PERIODIC FLOW8 

PMM Vol. 36, Nn2, 1972, pp.263-271 

V.I. KLIATSKIN 

(Moscow) 
(Received June 25, 1971) 

The nonlinear problem of two-dimensional motion of an unbounded incompress- 
ible viscous fluid under the action of a spatially periodic force is considered in 

a finite-dimensional approximation. When the number of finite-amplitude per- 
turbation harmonics is restricted, a stationary solution is found to exist. corres- 

ponding to a secondary flow. This solution is however unstable with respect to 
smaller perturbations. Equations expressing the total contribution of the most 

unstable harmonics are derived and are found to have no stationary solutions. 

Papers [4 - 73 propose a relatively simple approximate procedure of computing 
secondary equilibrium flows for the purpose of describing the first stage of form- 
ation of the finite-amplitude perturbations according to the scheme given in [l] 

(also see c2 and 31). In this procedure the Reynolds stresses governed by the finite- 
amplitude perturbations are balanced against the dissipation and the mean flow. 

The problem of the secondary flows, stationary or periodic, arising when the 
laminar flows of a viscous incompressible fluid become unstable, is considered 
in [8 - 131. 

The concept of mechanical hydrodynamic systems embracing finite-dimension- 
al approximations to the equations of hydrodynamics,is introduced in [143. In 

1151 a mechanical model is constructed in the form of chains of simplest systems. 
This model imitates the cascade mechanism of the energy transfer in a develop- 

ed turbulent flow and serves as an illustration of a possible simplest realisation 

of the Landau scheme. 

Below an equilibrium mode of a secondary flow is studied in a finite-dimen- 

sional approximation for a two-dimensional case. 

1, We consider a two-dimensional motion of an incompressible viscous fluid in the 
xy-plane under the action of a spatially periodic force acting in the direction of the 

IZ: -axis and equal to y sin py (y > 0). 
The Navier-Stokes and continuity equations have a stationary solution corresponding 

to a laminar flow moving in the z -direction with a velocity p-%-’ y sin py under 

a constant pressure (Y is the kinematic viscosity coefficient). As was shown in [ll. 161 

using the linear formulation, this solution is unstable with respect to small perturbations. 

Introducing the characteristic length p-t, velocity p-s~-~y and time pelvmLy and 

passing to the dimensionless variables. we can write the equations of motion and continu- 
ity in the form a,, thV 

@-g+-=-$++Au,+-&siny 
dY ( 

R=-& 
) 

&I auv &a 

z+&-ay= - ‘6 + + Av, g+g..=o (1-l) 

where u and u are the I- and y-velocity components, P is the dimensionless pressure 
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and R is the Reynolds’ number. For the stream function we have 

8 A a+ aA+ a$ aA$ -.....-.- 
at tl 

A$----_:_-=+sy 
ax ay (1.2) 

(u = ~lt?l@y, u = - aqldx) 

The infinitesimal perturbations grow rapidly in time by virtue of their linear instability. 
This in turn causes the growth of theReynolds’ stresseswhich ace described by the nonlinear 

terms of (1.1) and the amplitude of the laminac flow diminishes until another, different 
equilibrium flow is established. 

Let us represent the hydrodynamic fields in the form 

u = U (y, t) -t 7.L’ (z, y, Q, u = u’ (2, $4, t> 

Y = P, + P’ (x, y, t), 9 = Y (y, t) + 9’ (G Yt 2) (4 3) 

Here U (y, t) is the new equilibrium flow profile to be determined together with the 

Reynolds’ equilibrium stresses. The corresponding finite perturbations ace denoted by a 
prime. We assume the ~ct~bations to be harmonic in X, their wavelength equal to 

zn/afa>o), and during the first stage we shall only be concerned with the non- 

linear interaction between the first perturbation harmonic and the average flow, disceg- 
arding the higher harmonics, their mutual interaction and their interaction with the av- 

eraged flow. In this case the average flow (averaged with respect to x over a single 
wavelength) is defined by Ii (y, bj. 

Let us write the ~rturbations in the form 

c@ (x, y, t) = ~$1) (y, t) exp (Ian) + cp(-l) (y, t) exp (- iax) 
(rp’ = UI, u’, I)‘, 4’) 

where cp(-i) is a complex conjugate of rp (I). Then (1.1) yields the following system of 
equations describing the average flow and the perturbations n(l) (after eliminating P’ 
and u’) 

(1.4) 

2. Let us dwell on the results of the linear theory of stability. The stationary solution 
of the linear problem corresponds to the flow profile U (y) = sin y. The equation for 

the perturbations u(i) obtained here from the second equation of (1.4) was studied in [ 11, 
16) where it was shown that for the perturbations of the type 

n(l) = 
; v:) exp (c;t + iny} (2.1) 

?Z=--00 

2r -periodic in !! , with certain restrictions imposed on the wave number a and on 
R , real values of u exist, i.e. the solutions are unstable. The dispersion equation for 
o appears in the form of an infinite continued fraction. When a -f 0 [ll], the critical 
Reynolds number ll’ 1 == r/ 2. 

Let us limit ourselves to a finite number of harmonics in 9. In this case the dispersion 

equation for o has the form ~orres~nding to the convergent of the general continued 
fraction obtained in [16], and the critical Reynolds number R, - J’-% with a -f 0 in 
accordance with the result of [ll]. Thus the large wavelength perturbations moving 
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along the z-axis show greater instability. We can therefore assume that a -@ 1. In this 
case the components of the eigenvector {ug)) beginning with n 3 +- 2 and higher, have 
the order of at least a4. 

A solution of the second equation of (1.4) with U = sin y can be sought on other classes 

of functions. For example, if the solution is sought on the class of functions 4~ -period- 
ic in y , then we obtain for the harmonics of the form 

t)(1) = jj V$,*exP (at+i V?/) (2.2) 
11.=--c% 

a system of equations containing no harmonics of different type. Limlrmg ourselves to a 
minimum number of harmonics (v$\, v!$, ) we find that the solution of this system -2’ -2 
also corresponds to an unstable mode, that K, z ri. 5 and that the most unstable pertur- 
bations are those with the wave number a z 0.44. The eigennumber u and the eigen - 
vector {y(l)} are complex and this leads to a secondary flow which is both spatially and 

temporally periodic. 

3. Let us now investigate the system (1.4). We consider the perturbations of the tvne 
(2.1) as being the most unstable. Assuming that a< 1 corresponds to the most unstable 

perturbations and that I$‘) +s and the.smaller harmonics 
limit our conside;ations to the harmonics VP’ and u$. 

are of higher order in a we can 
Jn this case 

J (y,.t) = U (t) sin y (3.1) 
and the equation for ~(1) becomes 

( 

8 A _-- 
at R ) 

A0 + iu.U (t) sin y [u(l) + Av(l)] = 0 (3.2) 
Inserting (3.1) into (1.4) and utilizing the expansion (2.1) for v(l) we obtain for the fun- 
ctions 0) 20 = 00 , 2, = ui” -t vi:‘, z_=(zp-d11))/2 (3.3) 
the following system of equations: 

(3.4) 

The equation for s+ splits off from the remaining equations, consequently the corresp- 
onding perturbations can only decay with time. The remaining three equations form the 
simplest hydrodynamic system [14, 1.51 equivalent to the dynamic description of the 
motion of a gyroscope with anisotropic friction excited by the moment of external forces, 

taken with respect to the unstable axis. The stationary solution of (3.4) corresponds to 
the average flow profile and to the equilibrium Reynolds’ stresses 

(3.5) 

[up]” = ;$-f ) u1 (1) z a u. ) 0) 

0 
a<l, R>lf2 

or, in the dimensional quantities, 

U (y) = f> vp sin py, 
r R- %spy (u’u’) = - 77 (3.6) 



We note that the amplitude of the steady average equilibrium flow is independent of the 
amplitude of the excitation force. 

The stream function of the steady equilibrium flow has the form 

1/ :! 
$r = - /( cos !f - =r_ v,j (1) , pj a sin y cos tit 1- <<ill XC\ (3.7) 

We also note that a random element exists in the steady flow, namely-the quantity 0::) 
may either be positive or negative depending on the signs of the amplitudes of the initial 

infinitesimal perturbations. 
The corresponding streamlines of the flow at 

II = 2/f, = 2 1/ L (u. ?.- (1) > 0) 

are described by the equation 

d cos ?/ + V’S3 siu 1, (‘0s TX + sin a.1 = C 

Figure 1 shows schematically the streamlines and the average flow profile, 

Fig. 1. 

When the perturbations are sought on the class of functions (2.2). the resulting hydra,. 
dynamic system is of higher order with respect to the complex quantities uj:‘. An addit- 

ional harmonic is generated in the average flow profile, and the interaction of the har- 
monics between themselves and with the average flow which are related to the energy 

transfer between different orders of magnitude. is supplemented with another interaction 

leading to an oscillatory energy transfer between the harmonics of the same order of 
magnitude. This yields a secondary flow periodic in time. 

4, Let us investigate the stability of the secondary flow (3.7). Linearizing (1.2) with 
respect to the flow (3.7), we obtain the following equation for the perturbations 

We shall seek the solution of (4.1) on the class of functions which are Zrr ,’ CL -periodic 
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in I and 2~ -periodic in y , i.e. we shall write the solution in the form 

00 

$’ = 2 C:lesp jst $- i(ny -(- rhs)], C; = C:;, C,” = 0 (4.2) 
?l,ir=--a,. 

Inserting (4.2) into (4.1) we obtain the following system of equations for the coeffic- 
ients C”‘ 11 : 

1 
iv(,‘) p - ,q) in (n - 2) -1 z*k (k - 2)] CI;:7; + -& [n (n - 2) t- a”W C:-I - 

- ivy) (n + k) [n(n - 2) $- a2k (k + 2)l Ck’-:),$ 

_r ii&;) in” + %“k (k _ 2)] C;L-l + ‘5 m: 
I t 

ItpF 
) 

(n2 -t a2k2) C,” + 

_ inup I$ I- a2k (k + 2j] Cv’] + 

-.- I- ivi’) 
(n + k) [n (n ;-2)+u2k(k-2)]Clt;:--$--[In@ i-x)-t 

_. : (1) dW] cl’,+1 -+ ill, (n - k) [n (n + 2) + a?k (k + 2)] C;::] = 0 (4.3) 

The quantities $’ and $) appearing here are defined by (3.5). If we assume that the 
solution (3. ‘7) is accurate up to and including a2 terms, we shall neglect the us and 
higher terms in the course of solving (4.3). 

We see that the flow described by the stream function (3.7) is stable if we limit our- 

selves in the system (4.3) to the harmonics n = 0. &- 1 and k = 0, f 1 (i.e. if the 

solution of (4.1) is sought in the form (3.7)). It follows that the flow (3.7) can be unsta- 
ble only with respect to smaller perturbations. Let us limit ourselves to the harmonics 
7~ = 0, f 1, f 2; k = 0, f 1, + 2 and take into account only the principal (in CL ) 

terms, neglecting the a3 terms. It can easily be shown from (4.3) that all harmonics in 
y beginning with n = + 2 and smaller, will be of at least the a3 -order and can there- 
fore be neglected in the approximation considered. 

Let us replace the amplitudes Cfik of the harmonics with their linear combinations 

clt’, + c: = z:, c!, - c: = z!, c,” = z,” 

Then the system (4.3) splits into two seventh order systems for z 

0 

0 

2ivF’ 

Jf/ia 
R 

2iuv 

(4.4) 

X 
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0 a+$? 0 0 0 0 -r/Z, 
K 

@a - -- iup 0 0 
R 

0 Q +f 0 

- 4i$' 0 _ iv;') Q + 4 - ivp 0 0 

0 0 0 _ iuil) 6-t; -i$ 0 

0 4i$) 0 0 _ iv!' S-f -iv;) 

0 21/za - R o 0 0 _ iv:) a++ 

x 11 z," do2 2z2 z;l z-0 z+l z-2 11' = 0 

(4.5) 

X 

In the course of deriving (4.5) and (4.6) we have omitted in the expressions of 
form - i#’ (1 - a2), [o + (1 + a") / R] (1 + a") etc., the terms of the 

(4.6) 
the 

a2 - 
order. This is connected with the fact that the eigenvalues o for’the systems (4.5) and 

(4.6) which can correspond to instability of the flow (3.7) are themselves of the cc2- 

order. The neglected terms do not contribute anything towards the value of CT in this app- 

roximation and only become apparent in the higher orders (in cc ) which, as was shown 

before, were neglected. For this reason, we must assume in the case of unstable solutions 
of (4.5) an3 (4.6) that in the first five equations of (4.5) and in the last five equations 

of(4.6) o = 0. 
Let us consider the system (4.5). The system (4.6) can be treated in exactly the same 

way, and the eigenvalues CT for this system correspond to the stability of the flow (3.7) 
atall R>R,. Multiplying (4.5) by the inverse of the submatrix marked out with a 
broken line, and separating the solution into its real and imaginary parts, we obtain the 
following two systems of equations: 

Im zi2 

Re 51’ = 0 

Re ~0’ 

0 1 0 l/z, 
HAj 

He 2;” 

Im z? 

Re z+O 

I m zil 

(4.7) 

=o 

(4.8) 
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where 

A, = f A._,+(L$))~ An-z ($1 = + 9 A, = $- + (vi*‘)“) 

The eigenvalue o corresponding to the system (4.7) has the form 

(4.9) 

and this corresponds to the instability of the flow (3.7) at all R > R,, The eigenvalne 
CT for (4.8) on the other hand,corr~~nds to the stabillty of the flow (3.7) at all R > R,. 

Let us now consider the nonlinear equation (1.2) describing the stream function, taking 

into account not only the interaction of the perturbations with the average stream. but 

also the nonlinear interactions between the perturbations themselves (the harmonics dis- 

cussed in Sect. 3 and 4). For R > R, we arrive at a chain of two systems of equations 

of the type (3.4), in which the stationary solution of (3.4) generates not only the smaller 

scale motions. but also motions of the same order of magnitude, In this case the stream 

function (3.7) is supplemen~d by the following additional terms 

.2 Re ~a- cos KC -+ G I m z++ cos y sin 2x2 - -$ Re z_-1 sin y sin CCZ 

At the same time the degree of randomness of the solution increases as compared with 
(3.7). the effect connected with the sign of the amplitudes of the smaller scale infinites- 
imal perturbations. 

Thus we find that in this case the nonlinear interaction between the infinitesimal per- 

turbations and the interaction of the perturbations with the average flow are both signl- 

ficant. We can no longer limit ourselves to a finite number of harmonics in z (this, in 

effect, represents the Galerkin method with trigonometric monomials as coordinate func- 

tions) and must consider their infinite series. At the same time the harmonics in the y - 

direction may be restricted to those with n = -t_l,O. 

5. let us write the stream function in the form 

* (x, y, t) = *_1 (5, t) exp (-- Q> + *a (2, r) + 

+ *i (z, t) exp (iy> @-1 = 9%) (5.11 

where $i (x? 2) are 2~ / a -periodic functions in 2. 

Inserting (3.1) into (1.2). neglecting the CC” terms in the interactions between the 

harmonics and the a” terms in the dissipative terms for the harmonics q&l and intro- 

ducing new functions I&.~ $- ‘+r = 2 $+ and +&r - $r = 2ig_,we obtain 

(5.2) 

This system of equations sums the infinite series of harmonics in x and represents a gen- 
eralization of the system (3.4) of gyroscopic type equations to the infinite case. Its dis- 
tinguishing feature is the absence of stationary solutions periodic in x (except the solu- 
tion corresponding to a laminary flow), unlike the systems with a finite number of har- 

monics in 2, which all have stationary solutions. 
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